Telegram Group & Telegram Channel
Что делать, если распределение данных меняется со временем? Как это влияет на валидацию и Early Stopping

Когда данные со временем «плывут» (то есть меняется их распределение), фиксированный валидационный набор устаревает. В этом случае Early Stopping может остановить обучение в «лучшей» точке для старого распределения, но не для актуального.

🔍 Что можно сделать

1. Обновлять или ротационно менять валидационный набор
— Чтобы он отражал текущее состояние данных, а не прошлое.


2. Использовать скользящие метрики или онлайн-мониторинг
— Особенно в потоковых системах: метрики качества считаются по «живым» данным, а не по статичному отрезку.


3. Переобучать или дообучать модель при обнаружении дрейфа
— Если обнаружили drift, стоит не просто дообучить модель, а пересобрать или адаптировать её с учётом новых данных.


⚠️ Подводный камень:
Если валидация остаётся неизменной, вы можете не заметить, что модель перестала работать. Early Stopping в этом случае остановит обучение слишком рано или слишком поздно — и модель будет плохо обобщать на реальные данные.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/984
Create:
Last Update:

Что делать, если распределение данных меняется со временем? Как это влияет на валидацию и Early Stopping

Когда данные со временем «плывут» (то есть меняется их распределение), фиксированный валидационный набор устаревает. В этом случае Early Stopping может остановить обучение в «лучшей» точке для старого распределения, но не для актуального.

🔍 Что можно сделать

1. Обновлять или ротационно менять валидационный набор
— Чтобы он отражал текущее состояние данных, а не прошлое.


2. Использовать скользящие метрики или онлайн-мониторинг
— Особенно в потоковых системах: метрики качества считаются по «живым» данным, а не по статичному отрезку.


3. Переобучать или дообучать модель при обнаружении дрейфа
— Если обнаружили drift, стоит не просто дообучить модель, а пересобрать или адаптировать её с учётом новых данных.


⚠️ Подводный камень:
Если валидация остаётся неизменной, вы можете не заметить, что модель перестала работать. Early Stopping в этом случае остановит обучение слишком рано или слишком поздно — и модель будет плохо обобщать на реальные данные.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/984

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Importantly, that investor viewpoint is not new. It cycles in when conditions are right (and vice versa). It also brings the ineffective warnings of an overpriced market with it.Looking toward a good 2022 stock market, there is no apparent reason to expect these issues to change.

Telegram announces Anonymous Admins

The cloud-based messaging platform is also adding Anonymous Group Admins feature. As per Telegram, this feature is being introduced for safer protests. As per the Telegram blog post, users can “Toggle Remain Anonymous in Admin rights to enable Batman mode. The anonymized admin will be hidden in the list of group members, and their messages in the chat will be signed with the group name, similar to channel posts.”

Библиотека собеса по Data Science | вопросы с собеседований from es


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA